Low pe+pH inhibits Cd transfer from paddy soil to rice tissues driven by S addition

Chemosphere(2023)

引用 0|浏览8
暂无评分
摘要
Both soil irrigation and sulfur (S) are associated with the precipitation of cadmium (Cd)-sulfide in paddy soil, their interaction affecting on Cd solubility and extractability is still unknown. This study primarily discusses the effect of exogenous S addition on the bioavailability of Cd in paddy soil under unsteady pe + pH conditions. The experiment was treated with three different water strategies: continuous dryness (CD), continuous flooding (CF), and alternating dry-wet cycles for one cycle (DW). These strategies were combined with three different S concentrations. The results indicate that the CF treatment, particularly when combined with S addition, had the most significant effect on reducing pe + pH and Cd bioavailability in the soil. The reduction of pe + pH from 10.2 to 5.5 resulted in a decrease in soil Cd availability by 58.3%, and Cd accumulation in rice grain by 52.8%, compared to the other treatments. While it was more conducive to the formation of iron plaque on the root surface in DW treatment with S addition at rice maturing stage and enhanced the gathering of Fe/S/Cd. Structural equation model (SEM) analysis further confirmed a significant negative correlation (r = −0.916) between the abundance of soil Fer-reducing bacteria (FeRB) and sulfate-reducing bacteria (SRB) like Desulfuromonas, Pseudomonas, Geobacter, and the Cd content in rice grains. This study provides a basic mechanistic understanding of how soil redox status (pe + pH), S addition, and FeRB/SRB interacted with Cd transfer in paddy soil-rice tissues.
更多
查看译文
关键词
paddy soil,rice tissues,pe+ph
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要