METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells

Cell Reports(2023)

Cited 0|Views24
No score
Abstract
γδ T cells make key contributions to tissue physiology and immunosurveillance through two main functionally distinct subsets, γδ T1 and γδ T17. m6A methylation plays critical roles in controlling numerous aspects of mRNA metabolism that govern mRNA turnover, gene expression, and cellular functional specialization; however, its role in γδ T cells remains less well understood. Here, we find that m6A methylation controls the functional specification of γδ T17 vs. γδ T1 cells. Mechanistically, m6A methylation prevents the formation of endogenous double-stranded RNAs and promotes the degradation of Stat1 transcripts, which converge to prevent over-activation of STAT1 signaling and ensuing inhibition of γδ T17. Deleting Mettl3, the key enzyme in the m6A methyltransferases complex, in γδ T cells reduces interleukin-17 (IL-17) production and ameliorates γδ T17-mediated psoriasis. In summary, our work shows that METTL3-mediated m6A methylation orchestrates mRNA stability and double-stranded RNA (dsRNA) contents to equilibrate γδ T1 and γδ T17 cells.
More
Translated text
Key words
CP: Molecular biology,CP: Immunology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined