Metal-Oxide Heterojunction Optoelectronic Synapse and Multilevel Memory Devices Enabled by Broad Spectral Photocarrier Modulation.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 4|浏览19
暂无评分
摘要
Broad spectral response and high photoelectric conversion efficiency are key milestones for realizing multifunctional, low-power optoelectronic devices such as artificial synapse and reconfigurable memory devices. Nevertheless, the wide bandgap and narrow spectral response of metal-oxide semiconductors are problematic for efficient metal-oxide optoelectronic devices such as photonic synapse and optical memory devices. Here, a simple titania (TiO )/indium-gallium-zinc-oxide (IGZO) heterojunction structure is proposed for efficient multifunctional optoelectronic devices, enabling widen spectral response range and high photoresponsivity. By overlaying a TiO film on IGZO, the light absorption range extends to red light, along with enhanced photoresponsivity in the full visible light region. By implementing the TiO /IGZO heterojunction structure, various synaptic behaviors are successfully emulated such as short-term memory/long-term memory and paired pulse facilitation. Also, the TiO /IGZO synaptic transistor exhibits a recognition rate up to 90.3% in recognizing handwritten digit images. Moreover, by regulating the photocarrier dynamics and retention behavior using gate-bias modulation, a reconfigurable multilevel (≥8 states) memory is demonstrated using visible light.
更多
查看译文
关键词
multilevel memory devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要