Phenology-induced energy and carbon fluxes in land surface models

crossref(2020)

引用 0|浏览0
暂无评分
摘要
<p>The annual phenological cycle is of key importance for the carbon and energy fluxes in terrestrial ecosystems. Although the processes controlling budburst and leaf senescence are fairly well known, the connection between plant phenology and the carbon fluxes remains a challenging aspect in land surface modelling (LSM). In this study, the modelling strategies of three well stablished LSM are compared. The LSM considered in this study were: ORCHIDEE, ISBA-A-gs and the model driving the LSA-SAF evapotranspiration product (https://landsaf.ipma.pt). The latter model does not simulate the carbon fluxes but focuses on the computation of evapotranspiration and energy fluxes.<br>The phenological cycle is simulated explicitly in the ORCHIDEE model, using empirical relations based on temperature sum, water availability, and other variables. In the ISBA-A-gs model, phenology and LAI development is fully photosynthesis-driven. The phenology in the LSA-SAF model is driven by remote sensing forcing variables, such as LAI observations. Alternatively, the assimilation of remote sensing LAI products is a convenient method to improve the simulated phenological cycle in land surface models. A dedicated module for this operation is available in ISBA-A-gs.<br>Simulations were performed over a wide range of climatological conditions and plant functional types. The results were then validated with in-situ measurements conducted at Fluxnet stations. In addition to the comparison between measured and modelled carbon fluxes, the validation in this study included the intra-annual variation in the simulated phenological cycle.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要