Macrophage-derived miR-21 drives overwhelming glycolytic and inflammatory response during sepsis via repression of the PGE2/IL-10 axis

Paulo Melo, Annie Rocio Pineros Alvarez,C. Henrique Serezani

crossref(2020)

引用 0|浏览2
暂无评分
摘要
AbstractMyeloid cells play a critical role in the development of systemic inflammation and organ damage during sepsis. The mechanisms the development of aberrant inflammatory response remains to be elucidated. MicroRNAs are small non-coding RNAs that could prevent the expression of inflammatory molecules. Although the microRNA-21 (miR-21) is abundantly expressed in macrophages, the role of miR-21 in sepsis is controversial. Here we showed that miR-21 is upregulated in neutrophils and macrophages from septic mice. We found that myeloid-specific miR-21 deletion enhances animal survival, followed by decreased bacterial growth and organ damage during sepsis. Increased resistance against sepsis was associated with a reduction of aerobic glycolysis (as determined by reduced extracellular acidification rate (ECAR) and expression of glycolytic enzymes) and systemic inflammatory response (IL-1βTNFα and IL-6). While miR-21-/- macrophages failed to induce aerobic glycolysis and production of pro-inflammatory cytokines, we observed increased levels of the anti-inflammatory mediators’ prostaglandin E2(PGE2) and IL10. Using blocking antibodies and pharmacological tools, we further discovered that increased survival and decreased systemic inflammation in miR21Δmyelduring sepsis is dependent on the PGE2/IL10-mediated glycolysis inhibition. Together, we are showing a heretofore unknown role of macrophage miR21 in the orchestrating the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm and tissue damage during sepsis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要