Photonic Transformers

crossref(2020)

引用 0|浏览1
暂无评分
摘要
Abstract Largely-deformed1–4 microcavities5 support instabilities suppression6 chaotic ray-dynamics7, directional-emission8–10, and momentum transfer11 for nonlinear optics, but such deformations are generally possible only by fabricating discrete sets of resonators. In contrast, optical tweezers12–17 permit continuous large changes18–28, such as deformations from spherical dielectrics to triangular ones25. We report on transformable micro-photonic devices that change their functionality while operating. Assisted by computerized holographic-tweezers, we gradually deform the shape and change the functionality of a droplet whispering-gallery cavity. For example, we continuously deform hexagonal cavities to rectangular ones, and demonstrate switching to directionally emitting mode-of-operation, or splitting a resonant mode to a 10-GHz separated doublet. A continuous trend of improving spatial light modulators and tweezers suggests that our method is scalable to control the shape and functionality of many individual devices. We also demonstrate optional solidification proving the feasibility of transformers-enabled applications, including in printing 3D optical-circuits and multiwavelength optical-networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要