High yield preparation of outer-membrane protein efflux pumps byin vitrorefolding is concentration dependent

crossref(2020)

引用 0|浏览1
暂无评分
摘要
AbstractOverexpression of tripartite efflux pump systems in gram-negative bacteria are a principal component of antibiotic resistance. High-yield purification of the outer membrane component of these systems will enable biochemical and structural interrogation of their mechanisms of action and allow testing of compounds that target them. However, preparation of these proteins is typically hampered by low yields requiring laborious large-scale efforts. If refolding conditions can be found, refolding these proteins from inclusion bodies can lead to increased yields as compared to membrane isolations. Here, we develop a concentration-dependent folding protocol for refolding TolC, the outer membrane component of the antibiotic efflux pump fromEscherichia coli. We show that by our method of re-folding, homotrimeric TolC remains folded in SDS-PAGE, retains binding to an endogenous ligand, and recapitulates the known crystal structure by single particle cryoEM analysis. We find that a key factor in successful re-folding is a concentration dependence of TolC oligomerization. We extended the scheme to CmeC, a homologous protein fromCampylobacter jejuni, and find that concentration-dependent oligomerization is a general feature of these systems. Because outer-membrane efflux pump components are ubiquitous across gram-negative species, we anticipate that incorporating a concentration step in re-folding protocols will promote correct refolding allowing for reliable, high-yield preparation of this family of proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要