Reliable detection of focal-onset seizures in the human anterior nucleus of the thalamus using non-linear machine learning

crossref(2020)

引用 0|浏览0
暂无评分
摘要
AbstractObjectiveThere is an unmet need to develop seizure detection algorithms from brain regions outside the epileptogenic cortex. The study aimed to demonstrate the feasibility of classifying seizures and interictal states from local field potentials (LFPs) recorded from the human thalamus-a subcortical region remote to the epileptogenic cortex. We tested the hypothesis that spectral and entropy-based features extracted from LFPs recorded from the anterior nucleus of the thalamus (ANT) can distinguish its state of ictal recruitment from other interictal states (including awake, sleep).ApproachTwo supervised machine learning tools (random forest and the random kitchen sink) were used to evaluate the performance of spectral (discrete wavelet transform-DWT), and time-domain (multiscale entropy-MSE) features in classifying seizures from interictal states in patients undergoing stereo EEG evaluation for epilepsy surgery. Under the supervision of IRB, field potentials were recorded from the ANT in consenting adults with drug-resistant temporal lobe epilepsy. Seizures were confirmed in the ANT using line-length and visual inspection. Wilcoxon rank-sum (WRS) method was used to test the differences in spectral patterns between seizure and interictal (awake and sleep) states.Main Results79 seizures (10 patients) and 158 segments (approx. 4 hours) of interictal stereo EEG data were analyzed. The mean seizure detection latencies with line length in the ANT varied between seizure types (range 5-34 seconds). However, the DWT and MSE in the ANT showed significant changes for all seizure types within the first 20 seconds after seizure onset. The random forest (accuracy 93.9 % and false-positive 4.6%) and the random kitchen sink (accuracy 97.3% and false-positive 1.8%) classified seizures and interictal states.SignificanceThese results suggest that features extracted from the thalamic LFPs can be trained to detect seizures that can be used for monitoring seizure counts and for closed-loop seizure abortive interventions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要