A Serum- and Feeder-Free System to Generate CD4 and Regulatory T Cells from Human iPSCs

Helen Fong,Matthew Mendel, John Jascur, Laeya Najmi, Ken Kim, Garrett Lew, Swetha Garimalla, Suruchi Schock, Jing Hu, Andres Villegas,Anthony Conway,Jason D. Fontenot,Simona Zompi

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production. Using an optimized concentration of PMA/Ionomycin, we generated iPSC-CD4sp T cells at high efficiency and converted them to Tregs using TGFβ and ATRA. Using genetic engineering, we demonstrated high, non-viral, targeted integration of an HLA-A2 CAR in iPSCs. iPSC-Tregs +/- HLA-A2-targeted CAR phenotypically, transcriptionally and functionally resemble primary Tregs and suppress T cell proliferation in vitro . Our work is the first to demonstrate an iPSC-based platform amenable to manufacturing CD4 T cells to complement iPSC-CD8 oncology products and functional iPSC-Tregs to deliver Treg cell therapies at scale. ### Competing Interest Statement All authors are current or former Sangamo Therapeutics employees and shareholders.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要