Maternal, placental and fetal response to a non-viral, polymetric nanoparticle gene therapy in nonhuman primates

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览6
暂无评分
摘要
Background Currently, there are no placenta-targeted treatments to alter the in utero environment. Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like 1 growth factor ( IGF1 ) transgene to correct placental insufficiency in small animal models of fetal growth restriction (FGR). Our goal was to extend these studies to the pregnant nonhuman primate (NHP) and assess maternal, placental and fetal responses to nanoparticle-mediated IGF1 treatment. Methods Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles ( GFP- or IGF1- expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h ( GFP ; n =1), 48 h ( IGF1 ; n = 3) or 10 days ( IGF1 ; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues, and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4) and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using western blot and qPCR. Findings Fluorescent microscopy and in situ hybridization confirmed placental uptake and transgene expression in villous syncytiotrophoblast. No off-target expression was observed in maternal and fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4 and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 d after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent over activity in the normal pregnancy environment. Interpretation Maternal toxicity profile analysis and lack of adverse reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis indicates no deleterious impact of treatment. Funding National Institutes of Health, and Wisconsin National Primate Research Center. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
polymetric nanoparticle gene therapy,fetal response,primates,maternal,non-viral
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要