Fast Healthcare Interoperability Resources (FHIR)–Based Quality Information Exchange for Clinical Next-Generation Sequencing Genomic Testing: Implementation Study (Preprint)

crossref(2020)

Cited 0|Views3
No score
Abstract
BACKGROUND Next-generation sequencing (NGS) technology has been rapidly adopted in clinical practice, with the scope extended to early diagnosis, disease classification, and treatment planning. As the number of requests for NGS genomic testing increases, substantial efforts have been made to deliver the testing results clearly and unambiguously. For the legitimacy of clinical NGS genomic testing, quality information from the process of producing genomic data should be included within the results. However, most reports provide insufficient quality information to confirm the reliability of genomic testing owing to the complexity of the NGS process. OBJECTIVE The goal of this study was to develop a Fast Healthcare Interoperability Resources (FHIR)–based web app, NGS Quality Reporting (NGS-QR), to report and manage the quality of the information obtained from clinical NGS genomic tests. METHODS We defined data elements for the exchange of quality information from clinical NGS genomic tests, and profiled a FHIR genomic resource to enable information exchange in a standardized format. We then developed the FHIR-based web app and FHIR server to exchange quality information, along with statistical analysis tools implemented with the R Shiny server. RESULTS Approximately 1000 experimental data entries collected from the targeted sequencing pipeline CancerSCAN designed by Samsung Medical Center were used to validate implementation of the NGS-QR app using real-world data. The user can share the quality information of NGS genomic testing and verify the quality status of individual samples in the overall distribution. CONCLUSIONS This study successfully demonstrated how quality information of clinical NGS genomic testing can be exchanged in a standardized format. As the demand for NGS genomic testing in clinical settings increases and genomic data accumulate, quality information can be used as reference material to improve the quality of testing. This app could also motivate laboratories to perform diagnostic tests to provide high-quality genomic data.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined