The transcription factor OsbZIP48 governs rice responses to zinc deficiency

Plant, Cell & Environment(2023)

引用 0|浏览5
暂无评分
摘要
Zinc deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to zinc deficiency remains poorly understood. Herein, we present genetic evidence that OsbZIP48 is essential for regulating rice responses to zinc deficiency. Using the reverse genetics approach, genetic inactivation of OsbZIP48 in rice seedlings caused a hyper sensitivity to zinc deficiency, associated with a significant decrease in the root-to-shoot translocation of zinc. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by zinc deficiency in shoots, and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under zinc deficiency enabled the identification of OsbZIP48 target genes, including key zinc transporter genes ( OsZIP4 and OsZIP8 ). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the zinc deficiency response element (ZDRE) motif. Collectively, we showed that the OsbZIP48 gene encodes for a transcription factor in rice, and demonstrates its critical role in the response to zinc deficiency in this crop. This knowledge is crucial for the design of rice plants that are resilient to the globally prevalent zinc limitation through zinc bio-fortification programs. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要