A Precision Medicine Framework for Personalized Simulation of Hemodynamics in Cerebrovascular Disease

medRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览0
暂无评分
摘要
AbstractIntroductionCerebrovascular disease is a major public health challenge. An important biomarker is cerebral hemodynamics. To measure cerebral hemodynamics, however, only invasive, potentially harmful or time-to-treatment prolonging methods are available. We present a simulation-based alternative which allows calculation of cerebral hemodynamics based on the individual vessel con figuration of a patient derived from structural vessel imaging.MethodsWe implemented a framework allowing annotation of extracted brain vessels from structural imaging followed by 0-dimensional lumped modelling of cerebral hemodynamics. For annotation, a 3D-graphical user interface (GUI) was implemented. For 0D-simulation, we used a modified nodal analysis (MNA), which was adapted for easy implementation by code. The code was written in-house in java. The simulation GUI allows inspection of simulation results, identification of vulnerable areas, simulation of changes due to different systemic blood pressures. Moreover, sensitivity analysis was implemented allowing the live simulation of changes of variables such as vessel lumen to simulate procedures and disease courses. In two exemplary patients, simulation results were compared to dynamic-susceptibility-weighted-contrast-enhanced magnetic- resonance(DSC-MR) perfusion imaging.ResultsThe successful implementation of the framework allowing individualized annotation and simulation of patients is presented. In two exemplary patients, both the simulation as well as DSC- MRI showed the same results pertaining to the identification of areas vulnerable to ischemia. Sensitivity analysis allows the individualized simulation of changes in vessel lumen and the effect on hemodynamics.DiscussionWe present the first precision medicine pipeline for cerebrovascular disease which allows annotation of the arterial vasculature derived from structural vessel imaging followed by personalized simulation of brain hemodynamics. This paves the way for further development of precision medicine in stroke using novel biomarkers and might make the application of harmful and complex perfusion methods obsolete for certain use cases in the future.
更多
查看译文
关键词
precision medicine framework,cerebrovascular disease,personalized simulation,hemodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要