Overexpression of Rice Metacaspase, <em>OsMC4</em>, Increases Endoplasmic Reticulum Stress Tolerance in Transgenic Rice Calli

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Endoplasmic reticulum (ER) is an important organelle responsible as protein synthesis regulator in plant. High salinity can also lead to the activation of ER stress, caused by the accumulation of misfolded protein. This could lead to a stress response mechanism, unfolded protein response (UPR). Failure of UPR to reverse the effect of protein misfolding will activate Programmed Cell Death (PCD). Metacaspase genes regulate programmed cell death (PCD) in plants. The present study was focused on comprehensive gene analyses of the expression patterns of type II rice metacaspase (OsMC) genes in response to the endoplasmic reticulum (ER) and salinity stress in rice leaf and OsMC4 in callus. A strong evidence of unfolded protein response (UPR) during tolerance to both ER and salinity stress was found in the present study. Overexpression of OsMC4 in rice callus as a fusion protein with TagRFP and controlled by the CaMV35 promoter caused major changes in the expression of the stress ER-marker genes, protein disulfide isomerase (PDI) and Binding immunoglobulin Protein (BiP), and OsMC4 in overexpressing calli. These expression analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD related to ER and salinity stress responses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要