Bound in the continuum modes in indirectly-patterned hyperbolic media

crossref(2021)

引用 0|浏览9
暂无评分
摘要
Abstract A conventional optical cavity supports one or more modes, which are confined since they are unable to leak out of the cavity. Bound state in continuum (BIC) cavities are an unconventional alternative, based on confinement by destructive interference, even though optical leakage channels are available. BICs are a general wave phenomenon, of particular interest to optics, but BICs have never been demonstrated at the nanoscale level. Nanoscale BIC cavities are more challenging to realize, however, as they require destructive interference at the nanometer scale. Here, we demonstrate the first nanophotonic cavities based on BIC and find an unprecedented combination of quality factors and ultrasmall mode volume. In particular, we exploit hyperbolic media, HyM, as they can support large (in principle unlimited) momentum excitations, which propagate as ultra-confined rays, so that HyM cavities can in principle be extremely small. However, building a hyperbolic BIC (hBIC) cavity presents a fundamental challenge: an hBIC has an infinite number of modes, which would all need to interfere simultaneously. Here, we bring the BIC concept to the nanoscale by introducing and demonstrating a novel multimodal reflection mechanism of the ray-like optical excitations in hyperbolic materials. Using near-field microscopy, we demonstrate mid-IR confinement in BIC-based nanocavities with volumes down to 23x23x3〖nm〗^3 and quality factors above 100 – a dramatic improvement in several metrics of confinement. This alliance of HyM with BICs yields a radically novel way to confine light and is expected to have far reaching consequences wherever strong optical confinement is utilized, from ultra-strong light-matter interactions, to mid-IR nonlinear optics and a range of sensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要