Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors.

The Science of the total environment(2023)

引用 1|浏览5
暂无评分
摘要
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of ASVs associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
更多
查看译文
关键词
Wastewater treatment,Xenobiotics,Nitrification inhibition,Metagenomics,Metatranscriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要