A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity.

Entropy(2023)

引用 1|浏览6
暂无评分
摘要
Semi-quantum cryptography communication stipulates that the quantum user has complete quantum capabilities, and the classical user has limited quantum capabilities, only being able to perform the following operations: (1) measuring and preparing qubits with a Z basis and (2) returning qubits without any processing. Secret sharing requires participants to work together to obtain complete secret information, which ensures the security of the secret information. In the semi-quantum secret sharing (SQSS) protocol, the quantum user Alice divides the secret information into two parts and gives them to two classical participants. Only when they cooperate can they obtain Alice's original secret information. The quantum states with multiple degrees of freedom (DoFs) are defined as hyper-entangled states. Based on the hyper-entangled single-photon states, an efficient SQSS protocol is proposed. The security analysis proves that the protocol can effectively resist well-known attacks. Compared with the existing protocols, this protocol uses hyper-entangled states to expand the channel capacity. The transmission efficiency is 100% higher than that of single-degree-of-freedom (DoF) single-photon states, providing an innovative scheme for the design of the SQSS protocol in quantum communication networks. This research also provides a theoretical basis for the practical application of semi-quantum cryptography communication.
更多
查看译文
关键词
quantum cryptography, semi-quantum secret sharing, hyper-entangled states, degree of freedom, eavesdropping detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要