Similarities and Contrasts in Stationary Striations of Surface Tracers in Pacific Eastern Boundary Upwelling Systems

crossref(2021)

引用 0|浏览4
暂无评分
摘要
Eastern boundary upwelling systems feature strong zonal gradients of physical and biological ocean properties between cool, productive coastal oceans and warm, oligotrophic subtropical gyres. Zonal currents and jets (striations) are therefore likely to contribute to the transport of water properties between coastal and open oceanic regions. Multi-sensor satellite data are used to characterize the signatures of striations in sea surface temperature (SST), salinity (SSS), and chlorophyll-a (Chl-a) in subtropical eastern North/South Pacific (ENP/ESP) upwelling systems. In the ENP, tracers exhibit striated patterns extending up to ~2500 km offshore. Striations in SST and SSS are highly correlated with quasi-zonal jets, suggesting that these jets contribute to SST/SSS mesoscale patterns via zonal advection. Chl-a striations are collocated with sea surface height (SSH) bands, a possible result of mesoscale eddy trains trapping nutrients and forming striated signals. In the ESP, striations are only found in SST and coincide with SSH bands, consistently with quasi-zonal jets located outside major zonal tracer gradients. An interplay between large-scale SST/SSS advection by the quasi-zonal jets, mesoscale SST/SSS advection by the large-scale meridional flow and eddy advection may explain the persistent ENP hydrographic striations. These results underline the importance of quasi-zonal jets for surface tracer structuring at the mesoscale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要