Effect of Spinal Bracing on Curve Magnitude in Coronal and Axial Planes in Adolescent Scoliosis Utilising EOS Imaging.

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Purpose. This study aimed to investigate the efficacy of spinal bracing in treating progressive scoliosis deformity utilizing EOS (bi-planer) imaging and SterEOS reconstruction software. Methods. EOS images of scoliosis patients being treated with bracing were obtained both in and out of their brace. These images were processed using SterEOS software to allow 3D representation, which was then compared to traditional coronal 2D parameters. Between January 2019 and January 2020, 29 patients were recruited for participation. Of these participants, 25 had a single episode of EOS imaging out of and in their brace. Additionally, 19 of the 25 participants had further episodes of EOS imaging within the study period, separated by mean 144+/-44 days. This allowed a total of 44 EOS single scan episodes for parameter analysis out of, and in the brace. Longitudinal analysis was also performed on the 19 patients who had sequential scans.Results. Participants were mean 13.8±1.1 years old at the first scan. Coronal 2D parameters, specifically Cobb Angle measurement, were accurately reproducible with SterEOS 3D measurements. Across all EOS scans (n=44) the mean major coronal curve measurement was 42.3±13.3° out of brace and 37.2±13.8° in the brace. This produced a mean correction of 4.6±4.4° (p<0.05). The correction achieved in this cohort with bracing appeared more modest than those reported in previous studies using traditional 2D coronal curve measurements1–3. The mean axial vertebral rotation (AVR) was 10.6±7.1° out of the brace and 9.6±6.8° in the brace, with a mean correction of 1.4±5.3°(p=0.14). The current study results suggested no significant change in axial vertebral rotation with brace treatment. Notably, in 17 of the 44 AVR measured, the differences were negative. That is, the AVR worsened in the brace. There was a significant moderate correlation between 3D coronal Cobb angle measured and AVR measured out of the brace for all curves. However, the change in Cobb and change in AVR with bracing did not correlate.Over sequential EOS episodes (n=19), there appeared no significant progression of 3D parameters, interpreted as the brace preventing curve progression.Conclusions. There appeared to be a consistent reduction in the scoliosis Cobb angle of the major curve with brace treatment. AVR demonstrated no significant change with bracing, with instances of worsening of AVR in the brace, which was not reflected by Cobb angle measurement. Despite this, bracing appears to have been effective with limited curve progression in sequential scans, though not in the anticipated manner of immediate in-brace curve correction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要