Optimization of divertor design for Pakistan spherical tokamak

KERNTECHNIK(2023)

引用 0|浏览0
暂无评分
摘要
Handling the power deposition, reducing erosion effects, and plasma configuration are the key factors in the design of a divertor. The design of Pakistan Spherical Tokamak (PST) is based on double-null divertor configuration with actively cooled graphite targets at outer/inner strike point and peak heat flux range capacity of 0.1-0.3 MW/ m2. The configuration of PST divertor module is designed with mock-up (used flat type tiles on baffles and dome) and cassette (support PFC and cooling channels) technology. Helium-cooled stage and water-cooled stage are two options for divertor. Therefore, one part of this research is focused on water-cooling system for the divertor. This paper presents the divertor design for PST with cooling channel and material analysis of the divertor, which is carried out in three phases. In the first phase, the plasma edge temperature, density, particle velocity, input power, heat flux, and surface temperature are estimated. In second phase, physics and engineering design of divertor system has been performed. In the third phase, COMSOL simulation has been performed to analyses the material properties, surface temperature rise (.T degrees C) at stable heat flux, and thermal hydraulic system for the divertor. It is found from the analysis that the specific heat flux of 0.3 MW/m2 up to 3 s is the safe zone limit. The R & D work ratifies that manufacturing and installation processes are plausible for the proposed divertor design. This design is able to meet the requirement of PST. However, increasing time or specific heat flux beyond these limits would require redesigning of the cooling channel.
更多
查看译文
关键词
cooling channel,divertor,materials,mock-up,PST
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要