Susceptibility of Microseismic Triggering to Small Sinusoidal Stress Perturbations at the Laboratory Scale

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH(2023)

引用 0|浏览9
暂无评分
摘要
Small transient stress perturbations are prone to trigger (micro)seismicity. In the Earth's crust, these stress perturbations can be caused by various sources such as the passage of seismic waves, forcing by tides, or hydrological seasonal loads. A better understanding of the dynamic of earthquake triggering by stress perturbations is essential to improve our understanding of earthquake physics and our consideration of seismic hazard. Here, we study an experimental sandstone-gouge-filled fault system undergoing combined far field loading and periodic stress perturbations (of variable amplitude and frequency) at crustal pressure conditions. Microseismicity-in the form of acoustic emissions (AEs)-strains, and stresses, are continuously recorded in order to study the response of microseismicity as a function of loading rate, amplitude, and frequency of a periodic stress perturbation. The observed AE distributions do not follow the predictions of either a Coulomb failure model, taking into account both constant loading and oscillation-induced strain rates, or a rate and state model. A susceptibility of the system's AE response to the amplitude of the confinement pressure perturbation is estimated, which highlights a linear relation between confinement pressure amplitude and the AE response amplitude, observations which agree with recent higher frequency experimental results on dynamic triggering. The magnitude-frequency distribution of AEs is also computed. The Gutenberg-Richter b-value oscillates with stress oscillations. Our experiments may help complement our understanding of the influence of low inertia stress phenomena on the distribution of seismicity, such as observations of dynamic triggering and seismicity modulation by tides or hydrological loading.
更多
查看译文
关键词
Labquakes, periodic modulation, microseismicity, acoustic emission, b-value, periodic loading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要