A Mathematical Study for the Transmission of Coronavirus Disease

MATHEMATICS(2023)

引用 0|浏览1
暂无评分
摘要
Globally, the COVID-19 pandemic's development has presented significant societal and economic challenges. The carriers of COVID-19 transmission have also been identified as asymptomatic infected people. Yet, most epidemic models do not consider their impact when accounting for the disease's indirect transmission. This study suggested and investigated a mathematical model replicating the spread of coronavirus disease among asymptomatic infected people. A study was conducted on every aspect of the system's solution. The equilibrium points and the basic reproduction number were computed. The endemic equilibrium point and the disease-free equilibrium point had both undergone local stability analyses. A geometric technique was used to look into the global dynamics of the endemic point, whereas the Castillo-Chavez theorem was used to look into the global stability of the disease-free point. The system's transcritical bifurcation at the disease-free point was discovered to exist. The system parameters were changed using the basic reproduction number's sensitivity technique. Ultimately, a numerical simulation was used to apply the model to the population of Iraq in order to validate the findings and define the factors that regulate illness breakout.
更多
查看译文
关键词
coronavirus disease,mathematical study
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要