A flux-tunable YBa2Cu3O7 quantum interference microwave circuit

Kevin Uhl, Daniel Hackenbeck, Christoph Fueger,Reinhold Kleiner,Dieter Koelle,Daniel Bothner

APPLIED PHYSICS LETTERS(2023)

引用 1|浏览7
暂无评分
摘要
Josephson microwave circuits are essential for the currently flourishing research on superconducting technologies, such as quantum computation, quantum sensing, and microwave signal processing. To increase the possible parameter space for device operation with respect to the current standards, many materials for superconducting circuits are under active investigation. Here, we present the realization of a frequency-tunable, weakly nonlinear Josephson microwave circuit made of the high-temperature cuprate superconductor YBa2Cu3O7 (YBCO), a material with a high critical temperature and a very high critical magnetic field. An in situ frequency-tunability of similar to 300 MHz is achieved by integrating a superconducting quantum interference device (SQUID) into the circuit based on Josephson junctions directly written with a helium ion microscope (HIM). Our results demonstrate that YBCO-HIM-SQUID microwave resonators are promising candidates for quantum sensing and microwave technology applications.
更多
查看译文
关键词
microwave circuit,quantum,flux-tunable
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要