谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries

Sha Fu, Xuanzhi Xie,Xiaoyi Huangyang, Longxi Yang, Xianxiang Zeng, Qiang Ma,Xiongwei Wu, Mingtao Xiao,Yuping Wu

Molecules (Basel, Switzerland)(2023)

引用 0|浏览2
暂无评分
摘要
High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode-electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li| |Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm(-2), 0.2 mAh cm(-2). Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li| |LiNi0.8Co0.1Mn0.1O2 and Li| |LiNi0.6Co0.2Mn0.2O2 batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.
更多
查看译文
关键词
lithium metal batteries,metallic lithium anode,electrode-electrolyte interface,interface compatibility,nonflammable electrolytes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要