High-Throughput SARS-CoV-2 Antiviral Testing Method Using the Celigo Image Cytometer

Journal of Fluorescence(2024)

引用 0|浏览2
暂无评分
摘要
The COVID-19 pandemic has created a worldwide public health crisis that has since resulted in 6.8 million reported deaths. The pandemic prompted the immediate response of researchers around the world to engage in rapid vaccine development, surveillance programs, and antiviral testing, which resulted in the delivery of multiple vaccines and repurposed antiviral drug candidates. However, the emergence of new highly transmissible SARS-CoV-2 variants has renewed the desire for discovering new antiviral drug candidates with high efficacy against the emerging variants of concern. Traditional antiviral testing methods employ the plaque-reduction neutralization tests (PRNTs), plaque assays, or RT-PCR analysis, but each assay can be tedious and time-consuming, requiring 2–3 days to complete the initial antiviral assay in biologically relevant cells, and then 3–4 days to visualize and count plaques in Vero cells, or to complete cell extractions and PCR analysis. In recent years, plate-based image cytometers have demonstrated high-throughput vaccine screening methods, which can be adopted for screening potential antiviral drug candidates. In this work, we developed a high-throughput antiviral testing method employing the Celigo Image Cytometer to investigate the efficacy of antiviral drug candidates on SARS-CoV-2 infectivity using a fluorescent reporter virus and their safety by measuring the cytotoxicity effects on the healthy host cell line using fluorescent viability stains. Compared to traditional methods, the assays defined here eliminated on average 3–4 days from our standard processing time for antiviral testing. Moreover, we were able to utilize human cell lines directly that are not typically amenable to PRNT or plaque assays. The Celigo Image Cytometer can provide an efficient and robust method to rapidly identify potential antiviral drugs to effectively combat the rapidly spreading SARS-CoV-2 virus and its variants during the pandemic.
更多
查看译文
关键词
SARS-CoV-2,COVID-19,Antiviral,Drug repurposing,Image cytometry,Celigo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要