Chrome Extension
WeChat Mini Program
Use on ChatGLM

Corrosion of Copper in a Tropical Marine Atmosphere Rich in H2S Resulting from the Decomposition of Sargassum Algae

Mahado Said Ahmed,Mounim Lebrini, Benoit Lescop, Julien Pelle,Stephane Rioual, Olivia Amintas,Carole Boullanger, Christophe Roos

METALS(2023)

Cited 0|Views13
No score
Abstract
The atmospheric corrosion of copper exposed in Martinique (Caribbean Sea) for 1 year was reported. This island suffered the stranding of sargassum algae, which decompose and release toxic gases such as hydrogen sulfide (H2S) or ammonia (NH3). Four sites in Martinique (France) more or less impacted by sargassum algae strandings were selected. The corrosion rate was studied via mass loss determination. The morphology and properties of the corrosion products were determined using Scanning Electron Microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The samples were exposed for up to 12 months. The mass loss results after 1-year exposure were from 4.8 mu m for the least impacted site to 325 mu m for the site most affected by sargassum algae. This very high value proves that the presence of sargassum algae caused a significant degradation of copper. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of sargassum algae, classical corrosion products of copper were reported such as Cu2O and Cu2Cl(OH)(3). In the sites near the stranding of the sargassum algae, the CuS product is the main corrosion product obtained, but copper hydroxylsulfate is created.
More
Translated text
Key words
atmospheric corrosion,sargassum algae,corrosion of copper,H2S,SEM/EDS,XRD
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined