Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 1|浏览1
暂无评分
摘要
Lead sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for next-generation flexible solar cells because of near-infrared absorption, facile bandgap tunability, and superior air stability. However, CQD devices still lack enough flexibility to be applied to wearable devices owing to the poor mechanical properties of CQD films. In this study, a facile approach is proposed to improve the mechanical stability of CQDs solar cells without compromising the high power conversion efficiency (PCE) of the devices. (3-aminopropyl)triethoxysilane (APTS) is introduced on CQD films to strengthen the dot-to-dot bonding via QD-siloxane anchoring, and as a result, crack pattern analysis reveals that the treated devices become robust to mechanical stress. The device maintains 88% of the initial PCE under 12 000 cycles at a bending radius of 8.3 mm. In addition, APTS forms a dipole layer on CQD films, which improves the open circuit voltage (V ) of the device, achieving a PCE of 11.04%, one of the highest PCEs in flexible PbS CQD solar cells.
更多
查看译文
关键词
colloidal quantum dots,flexible solar cells,mechanical reliability,quantum dot,organic hybrid structures,quantum dot-siloxane anchoring,siloxane cross-linking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要