Path-dependent multiaxial fatigue behavior of A319 aluminum alloy under non-proportional loading conditions

MATERIALS TESTING(2023)

引用 0|浏览2
暂无评分
摘要
In the multiaxial low fatigue test study, four multiaxial non-proportional fatigue loading paths were used including rectangular, square, rhombic and circular. The effect of loading condition changes on the fatigue behavior and cyclic damage characteristics of A319 aluminum alloy was investigated by means of stress response curves, stress-strain hysteresis lines, fatigue fracture morphology, and dislocation substructure morphology in combination with material microstructure. The non-proportional hardening behavior exhibits strong loading path dependence, and the fatigue plastic deformation in the torsional direction is greater in the circular and rhombic paths, and the fatigue damage is more severe, resulting in a shorter fatigue life of A319 aluminum alloy. The axial directions under non-proportional multiaxial loading all have tensile and compressive asymmetric behavior. The differences in loading paths result in different fatigue crack expansion modes. The non-proportional additional hardening behavior under different loading paths is closely related to the dislocation substructure. In the rhombic and circular paths, the alloys have higher dislocation density and strong interaction between dislocations and precipitation phases, which is macroscopically expressed as stronger non-proportional hardening ability in the rhombic and circular loading paths.
更多
查看译文
关键词
a319 aluminum alloy,loading conditions,path-dependent,non-proportional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要