Cultivation of Gongolaria barbata (Fucales, Phaeophyceae) with a seaweed-derived biostimulant in order to improve photophysiological fitness and promote fertility to advance the restoration of marine macroalgal forests

JOURNAL OF APPLIED PHYCOLOGY(2023)

引用 1|浏览5
暂无评分
摘要
As a result of several anthropogenic factors, Cystoseira sensu lato forests have declined or become regionally extinct in many coastal regions of the Mediterranean. Given the low natural recovery of lost populations, research efforts have been encouraged to develop sustainable and efficient restoration of macroalgal forests on a large scale. By promoting growth and fertility of collected thallus branches under controlled laboratory conditions, the availability of seedlings for restoration could be ensured without jeopardizing natural populations. Here we investigated the effect of a commercial algal biostimulant (AlgatronCifo®) on the photophysiology, growth and fertility of Gongolaria barbata (Stackhouse) Kuntze (Fucales, Phaeophyceae). In a factorial laboratory experiment, two different temperatures (10 ºC and 14 °C) and two culture media [i.e. seawater (SW) and Algatron (AT)] were tested. The photosynthetic performance of G. barbata doubled after three weeks of culture with AT, while it decreased by 25% when cultivated in SW. The highest photosynthetic performance and growth were achieved at 14ºC with AT, where fertile receptacles also developed, followed by seedling settlements. The thalli cultured in AT had similar or better photosynthetic performance than the initial control thalli. AT-cultured thalli had a greater ability to quench energy via photochemical pathways (q P ) than those from the SW, which on the contrary, had higher levels of non-photochemical responses (q N , NPQ max ). This limited photosynthetic performance was probably linked to the higher P-limitation experienced under that treatment. The algal biostimulant enhanced the physiological performance and induced fertility of G. barbata , demonstrating its valorization potential and setting a new path for improved restoration applications.
更多
查看译文
关键词
Algal biostimulant,Ecological restoration,Gongolaria barbata,PAM fluorometry,Phaeophyceae,Photophysiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要