Exploiting satellite measurements to reduce uncertainties in UK bottom-up NO<sub>x</sub> emission estimates

Richard J. Pope, Rebecca Kelly,Eloise A. Marais,Ailish M. Graham,Chris Wilson,Jeremy J. Harrison, Savio J. A. Moniz, Mohamed Ghalaieny, Steve R. Arnold,Martyn P. Chipperfield

crossref(2021)

Cited 0|Views0
No score
Abstract
Abstract. Nitrogen oxides (NOx, NO+NO2) are potent air pollutants which directly impact on human health and which aid the formation of other hazardous pollutants such as ozone (O3) and particulate matter. In this study, we use satellite tropospheric column nitrogen dioxide (TCNO2) data to evaluate the spatiotemporal variability and magnitude of the United Kingdom (UK) bottom-up National Atmospheric Emissions Inventory (NAEI) NOx emissions. Although emissions and TCNO2 represent different quantities, for UK city sources we find a spatial correlation of ~0.5 between the NAEI NOx emissions and TCNO2 from the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI), suggesting a good spatial distribution of emission sources in the inventory. Between 2005 and 2015, the NAEI total UK NOx emissions and long-term TCNO2 record from the Ozone Monitoring Instrument (OMI), averaged over England, show decreasing trends of 4.4 % and 2.2 %, respectively. Top-down NOx emissions were derived in this study by applying a simple mass balance approach to TROPOMI observed downwind NO2 plumes from city sources. Overall, these top-down estimates were consistent with the NAEI, but for larger cities such as London and Manchester the inventory is significantly (> 25 %) less than the top-down emissions. This NAEI NOx emission underestimate is supported by comparing simulations from the GEOS-Chem atmospheric chemistry model, driven by the NAEI emissions, with satellite and surface NO2 observations over the UK. This yields substantial model negative biases, providing further evidence to demonstrate that the NAEI may be underestimating NOx emissions in London and Manchester.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined