Spike-independent infection of human coronavirus 229E in bat cells

crossref(2021)

引用 0|浏览1
暂无评分
摘要
AbstractBats are the reservoir for numerous human pathogens including coronaviruses. The factors leading to the emergence and sustained transmission of coronaviruses in humans are poorly understood. An outstanding question is how coronaviruses can accomplish a host switch with a likely mismatch between the surface protein spike of a bat virus and the human cellular receptor at the time of zoonotic virus transmission. To identify potential novel evolutionary pathways for zoonotic virus emergence, we serially passaged six human 229E isolates in a newly established Rhinolophus lepidus (horseshoe bat) kidney cells and analyzed viral genetic changes. Here we observed extensive deletions within the spike and ORF4 genes of five 229E viruses after passaging in bat cells. As a result, spike protein expression and infectivity of human cells was lost in 5 of 6 viruses but the capability to infect bat cells was maintained. Only viruses that expressed the spike protein could be neutralized by 229E spike-specific antibodies in human cells, whereas there was no neutralizing effect on viruses that do not express the spike protein inoculated on bat cells. However, one isolate acquired an early stop codon abrogating spike expression but maintaining infection in bat cells. Upon passaging this isolate in human cells, spike expression was restored due to acquisition of nucleotide insertions amongst virus subpopulations. Spike-independent infection of coronaviruses provides an alternative mechanism for viral maintenance in bats that does not rely on the compatibility of viral surface proteins and cellular entry receptors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要