谷歌浏览器插件
订阅小程序
在清言上使用

A Stochastic Binary Model for Regulation of Gene Expression to Investigate Treatment Effects Targeting RKIP

crossref(2021)

引用 0|浏览8
暂无评分
摘要
In this manuscript we use an exactly solvable stochastic binary model for regulation of gene expression to analyse the dynamics of response to a treatment aiming to modulate the number of transcripts of RKIP gene. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics towards pre-cancerous state: i. to increase the promoter’s ON state duration; ii. to increase the mRNAs’ synthesis rate; iii. to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reducing drug dosage by simultaneously targeting multiple kinetic rates. That enables a reduction of treatment response time and heterogeneity which in principle diminishes the chances of emergence of resistance to treatment. This approach may be useful for inferring kinetic constants related to expression of antimetastatic genes or oncogenes and on the design of multi-drug therapeutic strategies targeting master regulatory genes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要