Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis

crossref(2021)

引用 0|浏览4
暂无评分
摘要
Abstract Exercise offers mechanical loading to the bone, while it stimulates energy expenditure in the adipose tissue. Thus, bone may secrete a factor to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is expressed in the bone, upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Systemic IL-11 deletion (IL-11−/−) exhibited reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. Enhancement of bone resorption under mechanical unloading was unaffected. Unexpectedly, IL-11−/− mice showed increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice showed reduced serum IL-11, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11−/− mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre; IL-11fl/fl mice exhibited no abnormality. Thus, IL-11 from osteoblast/osteocyte controls both osteogenesis and systemic adiposity in response to mechanical loading. These findings may bring new therapeutic approaches to osteoporosis and metabolic syndrome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要