Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen-specificity

crossref(2021)

引用 0|浏览2
暂无评分
摘要
AbstractMurine models of immunization have played a major role in discovering antibody candidates against therapeutic targets. It nevertheless remains time-consuming and expensive to identify antibodies with diverse binding modalities against druggable candidate molecules. Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection in murine models of immunization. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of B cells following immunizations with a model therapeutic antigen target (human Tumor necrosis factor receptor 2, TNFR2). We determine the relationship between antibody repertoires, gene expression signatures and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage, somatic hypermutation, and transcriptional signatures failed to distinguish antigen-specific from non-specific B cells, other features such as IgG-subtype and sequence composition correlated with antigen-specificity. This work provides a single-cell resource for B cells relating antibody repertoires, transcriptomes and antigen specificity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要