Empirical model of multiple scattering effect on single-wavelength lidar data of aerosols and clouds

crossref(2021)

Cited 0|Views4
No score
Abstract
Abstract. We performed extensive Monte Carlo (MC) simulations of single-wavelength lidar signals from a plane-parallel homogeneous layer of atmospheric particles and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus and cirrus). Most of simulations were performed with the spatial resolution of 20 m and the particles extinction coefficient εp between 0.06 km−1 and 1.0 km−1. The resolution was of 5 m for high values of εp (up to 10.0 km−1). The majority of simulations for ground-based and airborne lidars were performed at two values of the receiver field-of-view (RFOV): 0.25 mrad and 1.0 mrad. The effect of the width of the RFOV was studied for the values up to 50 mrad. The proposed empirical model is a function that has only three free parameters and approximates the multiple-scattering relative contribution to lidar signals. It is demonstrated that the empirical model has very good quality of MC data fitting for all considered cases. Special attention was given to the usual operational conditions, i.e., low distances to a particles layer, small optical depths and quite narrow receiver field-of-views. It is demonstrated that multiple scattering effects cannot be neglected when the distance to a particles layer is about 8 km or higher and the full RFOV is of 1.0 mrad. As for the full RFOV of 0.25 mrad, the single scattering approximation is acceptable for aerosols (εp ≲ 1.0 km−1), water clouds (εp ≲ 0.5 km−1), and cirrus clouds (εp ≤ 0.1 km−1). When the distance to a particles layer is of 1 km, the single scattering approximation is acceptable for aerosols and water clouds (εp ≲ 1.0 km−1, both RFOV = 0.25 and RFOV = 1 mrad). As for cirrus clouds, the effect of multiple scattering cannot be neglected even at such low distance when εp ≳ 0.5 km−1.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined