Chrome Extension
WeChat Mini Program
Use on ChatGLM

Remote Oxidative Activation of a [Cp*Rh] Monohydride

Emily Boyd, Julie Hopkins Leseberg, Emma Cosner,Davide Lionetti,Wade Henke,Victor Day,James Blakemore

crossref(2021)

Cited 0|Views0
No score
Abstract
Half-sandwich rhodium monohydrides are often proposed as intermediates in catalysis, but little is known regarding the redox-induced reactivity accessible to these species. Here, the κ2-bis-diphenylphosphinoferrocene (dppf) ligand has been used to explore the reactivity that can be induced when a [Cp*Rh] monohydride undergoes remote (dppf-centered) oxidation by 1e–. Chemical and electrochemical studies showed that one-electron redox chemistry is accessible to Cp*Rh(dppf), including a unique quasi-reversible RhII/I process at –0.96 V vs. ferrocenium/ferrocene (Fc+/0). This redox manifold was confirmed by isolation of an uncommon Rh(II) species that was characterized by EPR spectroscopy. Protonation of Cp*Rh(dppf) with anilinium triflate yielded an isolable and inert monohydride, and this species was found to undergo a quasireversible electrochemical oxidation at +0.41 V vs Fc+/0 that corresponds to iron-centered oxidation in the dppf backbone. Thermochemical analysis predicts that this dppf-centered oxidation drives a dramatic increase in acidity of the Rh–H moiety by 23 pKa units, a reactivity pattern confirmed by in situ 1H NMR studies. Taken together, these results show that remote oxidation can effectively induce M–H activation and suggest that ligand-centered redox activity could be an attractive feature for design of new systems relying on hydride intermediates.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined