Effects of Transcranial Magneto-acoustic Electrical Stimulation on Discharge propagation in feed-forward neural network

Research Square (Research Square)(2022)

引用 0|浏览2
暂无评分
摘要
Abstract The mammalian brain has an extremely complex, diversified and highly modular structure, and information dissemination in the modular brain network affects various brain diseases. Although a variety of neuromodulation techniques have been used to study the discharge characteristics of neural networks, the effects of transcranial magneto-acoustic electrical stimulation(TMAES) have rarely been mentioned. Based on the excitatory and inhibitory Izhikevich neuron model, we constructs a feed-forward neural network connected by electrical synapses and chemical synapses, and analyzes the firing frequency of the neural network under TMAES and magnetic stimulation and the differences in each layer types of firing patterns of neurons. The results showed that the discharge patterns of neurons in each layer were different, the discharge frequency of inhibitory neurons was higher than that of excited neurons, and the stimulation signal could be transmitted to the whole network layer.The maximum discharge frequency of neural network connected by electrical coupling can reach 0.94kHz, and the discharge frequency of neural network connected by chemical coupling is less than 0.5 kHz.With the increase of coupling degree, the discharge frequency of neurons in each network layer under TMAES is much greater than that under magnetic stimulation.When the induced current is less than 26.5μA/cm 2 , magnetic stimulation can promote the inhibitory neurons, and TMAES has a variety of regulatory effects on the inhibitory neurons in the neural network. The results show that TMAES has better regulation effect than magnetic stimulation, and the regulation effect is affected by neural network structure and stimulation parameters.
更多
查看译文
关键词
electrical stimulation,discharge propagation,magneto-acoustic,feed-forward
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要