Modeling the translocation and transformation of chemicals in the soil-plant continuum: a dynamic plant uptake module for the HYDRUS model

crossref(2022)

引用 0|浏览2
暂无评分
摘要
<p>Soil pollution from neutral and ionizable compounds poses a significant threat to water resources management and food production. The development of numerical models to describe their reactive transport in the soil-plant domain is of paramount importance to elaborate mitigation strategies. However, most existing models simplify the description of physicochemical processes in soil and plants, mass transfer processes between soil and plants and in plants, and transformation in plants. To fill this scientific gap, we first coupled the widely used hydrological model, HYDRUS, with a multi-compartment dynamic plant uptake model, which accounts for differentiated multiple metabolization pathways in plant&#8217;s tissues. The model, which is able to simulate the reactive transport of neutral compounds, has been successfully validated against experimental data, and integrated in the Graphical User Interface of the HYDRUS software suite. To further extend its domain of applicability, we have recently adapted its theoretical framework to simulate the translocation of ionizable compounds. The new modeling framework connects a biophysical multi-organelles model to describe processes at the cell level with a semi-mechanistic soil-plant model, and accounts for dissociation processes and electrical interactions with cell biomembranes. Validation against experimental data showed encouraging results and opens new perspectives for its use for predictive and explanatory purposes.</p><p>&#160;</p><p><strong>References</strong></p><p>&#352;im&#367;nek, J., G. Brunetti, and R. Kode&#353;ov&#225;, Modeling the translocation and transformation of chemicals in the soil-plant continuum: A dynamic plant uptake module for the HYDRUS model, AGU Annual Meeting, ID 810092, New Orleans, Louisiana, December 13-17, 2021.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要