Characterization of space-time structures in 3D simulations of plasma turbulence with Fast Iterative Filtering.

crossref(2022)

引用 0|浏览3
暂无评分
摘要
<p>We present results from a multiscale spatiotemporal analysis of 3D Hall-MHD and hybrid kinetic numerical simulations of decaying plasma turbulence. By combining Fourier analysis and Fast Iterative Filtering, we compute the 3D <em><strong>k</strong></em>-&#969; power spectrum of the magnetic and velocity fluctuations at the time when turbulence has fully developed. We find that the magnetic fluctuations around and just below the ion characteristic scales mainly consist of strongly anisotropic perturbations, with temporal frequencies smaller than the ion-cyclotron frequency and with wave vectors almost perpendicular to the ambient magnetic field. Further analysis reveals that such perturbations cannot be described in terms of wave-like fluctuations, but rather consist of localized structures that are organized in a filamentary network of current sheets, which continuously form and disrupt as a consequence of magnetic reconnection, spontaneously induced by the interaction of turbulent structures. We discuss similarities and differences with respect to previous findings from 2D simulations, and we put our results in the context of spacecraft observations in the solar wind.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要