On wave interference in planet migration: dead zone torques modified by active zone forcing

ASTROPHYSICAL JOURNAL(2023)

引用 0|浏览2
暂无评分
摘要
We investigate planetary migration in the dead zone of a protoplanetary disk where there are a set of spiral waves propagating inward due to the turbulence in the active zone and the Rossby wave instability (RWI), which occurs at the transition between the dead and active zones. We perform global 3D unstratified magnetohydrodynamical (MHD) simulations of a gaseous disk with the FARGO3D code, using weak gradients in the static resistivity profiles that trigger the formation of a vortex at the outer edge of the dead zone. We find that once the Rossby vortex develops, spiral waves in the dead zone emerge and interact with embedded migrating planets by wave interference, which notably changes their migration. The inward migration becomes faster depending on the mass of the planet, due mostly to the constructive (destructive) interference between the outer (inner) spiral arm of the planet and, the destruction of the dynamics of the horseshoe region by means of the set of background spiral waves propagating inward. The constructive wave interference produces a more negative Lindblad differential torque which inevitably leads to an inward migration. Lastly, for massive planets embedded in the dead zone, we find that the spiral waves can create an asymmetric wider and depeer gap than in the case of $\alpha$-disks, and can prevent the formation of vortices at the outer edge of the gap. The latter could generate a faster or slower migration compared to the standard type-II migration.
更多
查看译文
关键词
dead zone torques,planet migration,wave interference,active zone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要