Chrome Extension
WeChat Mini Program
Use on ChatGLM

Tayler-Spruit dynamos in simulated radiative stellar layers

arXiv (Cornell University)(2023)

Cited 0|Views5
No score
Abstract
The Tayler-Spruit dynamo mechanism has been proposed two decades ago as a plausible mechanism to transport angular momentum in radiative stellar layers. Direct numerical simulations are still needed to understand its trigger conditions and the saturation mechanisms. The present study follows up on (Petitdemange et al. 2023), where we reported the first numerical simulations of a Tayler-Spruit dynamo cycle. Here we extend the explored parameter space to assess in particular the influence of stratification on the dynamo solutions. We also present numerical verification of theoretical assumptions made in (Spruit 2002), which are instrumental in deriving the classical prescription for angular momentum transport implemented in stellar evolution codes. A simplified radiative layer is modeled numerically by considering the dynamics of a stably-stratified, differentially rotating, magnetized fluid in a spherical shell. Our simulations display a diversity of magnetic field topologies and amplitudes depending on the flow parameters, including hemispherical solutions. The Tayler-Spruit dynamos reported here are found to satisfy magnetostrophic equilibrium and achieve efficient turbulent transport of angular momentum, following Spruit's heuristic prediction.
More
Translated text
Key words
tayler-spruit
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined