Infrastructure Strategy to Enable Optical Communications for Next-Generation Heliophysics Missions

Bulletin of the AAS(2023)

Cited 0|Views4
No score
Abstract
To expand frontiers and achieve measurable progress, instruments such as hyperspectral imagers are increased in resolution, field of view, and spectral resolution and range, leading to dramatically higher data volumes. Increasingly, data need to be returned from greater distances, ranging from the Sun-earth L1/ L2 points at 1.5 million km, to L4/L5 halo orbits at 1 AU, to several AU in the case of planetary probes. Optical communications can significantly reduce resource competition, requiring significantly fewer passes per day and/or shorter overall passes, and thereby enable far greater, transformative science return from individual missions and the capacity to support multiple such missions within a smaller ground network. Optical communications also provides superior performance and increased ranges for Inter-satellite Links (ISL) from 2,000 to 10,000 km for Swarms and DSMs. Lastly, the only way to guarantee timely space weather warnings (with a target of 15 minutes latency) is through space relays in MEO or GEO orbits, a strategy which also includes optical communications.
More
Translated text
Key words
optical communications,infrastructure strategy,missions,next-generation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined