Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes

S. Casas, V. F. Cardone, D. Sapone, N. Frusciante, F. Pace, G. Parimbelli, M. Archidiacono, K. Koyama, I. Tutusaus,S. Camera,M. Martinelli,V. Pettorino, Z. Sakr, L. Lombriser, A. Silvestri, M. Pietroni, F. Vernizzi,M. Kunz,T. Kitching, A. Pourtsidou, F. Lacasa,C. Carbone,J. Garcia-Bellido,N. Aghanim,B. Altieri, A. Amara, N. Auricchio, M. Baldi, C. Bodendorf, E. Branchini,M. Brescia, J. Brinchmann, V. Capobianco,J. Carretero,M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, C. J. Conselice, L. Conversi,Y. Copin, L. Corcione, F. Courbin, H. M. Courtois, A. DaSilva, H. Degaudenzi, F. Dubath, C. A. J. Duncan,X. Dupac,S. Dusini, S. Farrens, S. Ferriol,P. Fosalba, M. Frailis, E. Franceschi, M. Fumana,S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, A. Grazian, F. Grupp,L. Guzzo, S. V. H. Haugan, F. Hormuth,A. Hornstrup, P. Hudelot, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger,H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano,O. Mansutti,O. Marggraf,F. Marulli, R. Massey, E. Medinaceli, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. -M. Niemi, C. Padilla,S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, S. Pires, G. Polenta, M. Poncet, L. A. Popa, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, B. Sartoris, V. Scottez, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco,J. -L. Starck, C. Surace, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, E. A. Valentijn, L. Valenziano, T. Vassallo, Y. Wang, J. Weller, J. Zoubian

HAL (Le Centre pour la Communication Scientifique Directe)(2023)

引用 0|浏览40
暂无评分
摘要
$\textit{Euclid}$ will provide a powerful compilation of data including spectroscopic redshifts, the angular clustering of galaxies, weak lensing cosmic shear, and the cross-correlation of these last two photometric observables. In this study we extend recently presented $\textit{Euclid}$ forecasts into the Hu-Sawicki $f(R)$ cosmological model, a popular extension of the Hilbert-Einstein action that introduces an universal modified gravity force in a scale-dependent way. Our aim is to estimate how well future $\textit{Euclid}$ data will be able to constrain the extra parameter of the theory, $f_{R0}$, for the range in which this parameter is still allowed by current observations. For the spectroscopic probe, we use a phenomenological approach for the scale dependence of the growth of perturbations in the terms related to baryon acoustic oscillations and redshift-space distortions. For the photometric observables, we use a fitting formula that captures the modifications in the non-linear matter power spectrum caused by the $f(R)$ model. We show that, in an optimistic setting, and for a fiducial value of $f_{R0} = 5 \times 10^{-6}$, $\textit{Euclid}$ alone will be able to constrain the additional parameter $\log f_{R0}$ at the $3\%$ level, using spectroscopic galaxy clustering alone; at the $1.4\%$ level, using the combination of photometric probes on their own; and at the $1\%$ level, using the combination of spectroscopic and photometric observations. This last constraint corresponds to an error of the order of $6 \times 10^{-7}$ at the $1\sigma$ level on the model parameter $f_{R0} = 5 \times 10^{-6}$. We report also forecasted constraints for $f_{R0} = 5 \times 10^{-5}$ and $f_{R0} = 5 \times 10^{-7}$ and show that in the optimistic scenario, $\textit{Euclid}$ will be able to distinguish these models from $\Lambda\mathrm{CDM}$ at more than 3$\sigma$. (abridged)
更多
查看译文
关键词
cosmologies,spectroscopic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要