Broadband surface-emitting THz laser frequency combs with inverse-designed integrated reflectors

APL PHOTONICS(2023)

引用 0|浏览16
暂无评分
摘要
THz quantum cascade lasers (QCLs) based on double metal waveguides feature broadband and high-temperature devices for their use in spectroscopy and sensing. However, their extreme field confinement produces poor output coupling efficiencies and divergent far-fields. Here, we present a planarized THz QCL with an inverse-designed end facet reflector coupled to a surface-emitting patch array antenna. All the components have been optimized for octave-spanning spectral bandwidths between 2 and 4 THz and monolithically integrated on the same photonic chip. We demonstrate this experimentally on broadband THz QCL frequency combs, with measured devices showing a seven-fold improvement in slope efficiency compared to devices with a cleaved facet. They feature a peak power of up to 13.5 mW with surface emission into a narrow beam with a divergence of (17.0 degrees x 18.5 degrees), while broadband fundamental and harmonic comb states spanning up to 800 GHz are observed. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要