Orofacial Clefts Alter Early Life Oral Microbiome Maturation Towards Dysbiosis

crossref(2022)

引用 0|浏览1
暂无评分
摘要
Abstract Orofacial clefts (OFC) present different phenotypes and severities with a postnatal challenge for oral microbiota development. In order to investigate the impact of OFC on oral microbiota, smear samples from 15 neonates with OFC and 17 neonates without OFC were collected from two oral niches (tongue, cheek) at two time points, i.e. at first consultation after birth (T0: Ø3d OFC group; Ø2d control group) and 4–5 weeks later (T1: Ø32d OFC group; Ø31d control group). Subsequently, the samples were processed and analyzed using next-generation sequencing. We detected a significant increase in alpha diversity and distinct phenotypes, e.g., anaerobic and gram-negative species from T0 to T1 in both groups. Further, we found that at T1 OFC neonates presented a significantly lower alpha diversity with lowest values for high cleft severity and significantly higher levels of Enterobacteriaceae (Citrobacter, Enterobacter, Escherichia-Shigella, Klebsiella), Enterococcus, Bifidobacterium, Corynebacterium, Lactocaseibacillus, Staphylococcus, Acinetobacter and Lawsonella compared to controls. Notably, neonates with unilateral and bilateral cleft lip (UCLP/BCLP) and palate presented similarities in beta diversity and a mixture with skin microbiota. However, significant differences were seen in neonates with cleft palate only compared to UCLP/BCLP with higher levels of anaerobic species. Our findings revealed an influence of OFC as well as cleft phenotype and severity on postnatal oral microbiota maturation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要