Chrome Extension
WeChat Mini Program
Use on ChatGLM

Mutant TRIAP1 causes impaired mitochondrial bioenergetics and myopathy

Biochimica et Biophysica Acta (BBA) - Bioenergetics(2022)

Cited 0|Views21
No score
Abstract
Cellular senescence is a phenotype characterized by irreversible growth arrest, chronic elevated secretion of proinflammatory cytokines and matrix proteases, a phenomenon known as senescence-associated secretory phenotype (SASP). Biomarkers of cellular senescence have been shown to increase with age and degeneration of human disc tissue. Senescent disc cells in culture recapitulate features associated with age-related disc degeneration, including increased secretion of proinflammatory cytokines, matrix proteases, and fragmentation of matrix proteins. However, little is known of the metabolic changes that underlie the senescent phenotype of disc cells. To assess the metabolic changes, we performed a bioenergetic analysis of in vitro oxidative stress-induced senescent (SIS) human disc cells. SIS disc cells acquire SASP and exhibit significantly elevated mitochondrial content and mitochondrial ATP-linked respiration. The metabolic changes appear to be driven by the upregulated protein secretion in SIS cells as abrogation of protein synthesis using cycloheximide decreased mitochondrial ATP-linked respiration. Taken together, the results of the study suggest that the increased energy generation state supports the secretion of senescent associated proteins in SIS disc cells.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined