Mirror symmetry for new physics beyond the Standard Model in $4D$ spacetime

Symmetry(2022)

Cited 0|Views0
No score
Abstract
The two discrete generators of the full Lorentz group $O(1,3)$ in $4D$ spacetime are typically chosen to be parity inversion symmetry $P$ and time reversal symmetry $T$, which are responsible for the four topologically separate components of $O(1,3)$. Under general considerations of quantum field theory (QFT) with internal degrees of freedom, mirror symmetry is a natural extension of $P$, while $CP$ symmetry resembles $T$ in spacetime. In particular, mirror symmetry is critical as it doubles the full Dirac fermion representation in QFT and essentially introduces a new sector of mirror particles. Its close connection to T-duality and Calabi-Yau mirror symmetry in string theory is clarified. Extension beyond the Standard model can then be constructed using both left- and right-handed heterotic strings guided by mirror symmetry. Many important implications such as supersymmetry, chiral anomalies, topological transitions, Higgs, neutrinos, and dark energy, are discussed.
More
Translated text
Key words
symmetry,new physics,standard model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined