A database to compare possible MOFs for volumetric hydrogen storage, taking into account the cost of their building blocks

Jose Antonio Villajos Collado, Martin Bienert,Nikita Gugin,Franziska Emmerling,Michael Maiwald

crossref(2022)

引用 0|浏览1
暂无评分
摘要
Physical adsorption at cryogenic temperature can increase the density of the stored hydrogen at a lower pressure than conventional compressed gas systems. This mechanism is also reversible and involves faster kinetics than chemical storage. Materials with certain structural and porous properties are necessary for volumetrically efficient hydrogen storage, including large specific surface areas, pore volumes, and appropriated bulk densities. Metal-organic frameworks (MOF) materials are remarkable candidates as adsorbents due to their porous properties and high crystallinity. Large databases like the MOF subset from the CSD or the CoRE-MOF can be used to find the best materials for this application, providing crystallographic information, composition, and porous properties. Herein, we created a database which includes crystallographic and porous properties, metallic and organic composition, and the minimum available cost for their linkers and corresponding suppliers for those for which it was publicly available. The database is also helpful for selecting structures with potential for industrial production and starting material for computational tools like machine learning or artificial intelligence approaches that relate the composition of MOFs with their performance in different applications. A user interface allows for creating customized selections of suitable MOF structures, looking for their porous and crystalline properties, gravimetric and volumetric total uptakes, and metallic and organic composition, as well as properties for the organic linkers like name, molecular mass, price, or presence of specific functional groups. This information was used to select potential structures from up to two metals and two linkers for the volumetric cryostorage of hydrogen.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要