Holistic Prediction of Nucleophilicity and Electrophilicity Based on a Machine Learning Approach

crossref(2023)

引用 0|浏览3
暂无评分
摘要
Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be useful tools for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine-learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical, and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles and 22 solvents, the dataset was currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr’s N and E parameters with R2 of 0.96 and 0.92, MAE of 0.99 and 1.47, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NAD(P)H and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要