Abiotic and Biotic Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-plant Phenotypic Plasticity

crossref(2022)

引用 0|浏览4
暂无评分
摘要
Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping a highly dynamic and heterogeneous stressful environments. This study aims to evaluate the to-mato morpho-physiological and metabolic responses to combined abiotic and herbivory at dif-ferent within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and VOC profiles were measured in to-mato plants exposed to N deficiency and drought, T. absoluta larvae and their combination. Ad-ditive, synergistic or antagonistic effects of the single stress when combined were also evaluat-ed. Morpho-physiological traits and VOC profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOC tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggest that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defence resources in the heterogeneous and multiple stressful environmental condi-tions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要